machine learning
KDD16で発表されてた論文。著者はかの有名なFactorization Machinesの人。Googleに行ってたのね。いままでとはちょっと違う研究をしてるように感じる。 論文はここから読める。 www.kdd.org 勉強会で紹介したので念のため、その時のスライドはこちら。 Robus…
scikit-learn準拠で Label propagation 的なアルゴリズム達を実装した。なんで実装したかというと、 グラフそのもの(隣接行列)を入力したい。 scikit-learnには既にsklearn.semi_supervised.LabelPropagationが実装されてるけど、これはグラフを入力するん…
Graph embedding を調べる上で避けては通れないっぽいTransEを実装して実験再現してみた。モデルがシンプルでカッコイイし実装も簡単だった。データもパラメータも公開されてて実験を再現できたのもポイント高い。 TransE NIPS'13で提案されたGraph embeddin…
最近Graph embeddingに興味があって調べてるので有名っぽいRESCAL [ICML'11] をとりあえず実装してみた。さすが結構引用されてるだけあって簡単お手頃に実装できた。やっぱシンプルさ大事。 Graph embedding 入力 グラフ G = (V,E) 出力 それぞれの頂点 に対…
無向グラフの時のPersonalized PageRank*1とLabel Propagation*2(LGCとも呼ばれる)が本質的に等価というお話。つまりLabel Propagationを計算したいときはPersonalized PageRankを計算すれば等価な結果が得られる。Personalized PageRankとLabel Propagati…
Machine Learning Advent Calendar 2015 の10日目です。 EMアルゴリズム自体の説明は溢れてるけど実際にEMアルゴリズムを使って何かを解いてみたっていう例題はGMM(Gaussian Mixture Model)以外あまり見ない気がする。なので今日は二つの例題を使って具体…
PAKDD2015に論文が通っていたので発表した。タイトルは"SocNL: Bayesian Label Propagation with Confidence"。自分で参加して発表したかったんだけどちょうど同じ日程でWWW2015が開催されていて、そっちでの発表もあったので、PAKDDには参加できなかった。…
AAAI2015で発表してきた。タイトルは"OMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation"。必殺チェアーからの質問による時間稼ぎは出ずにちゃんと聞いてくれてる人たちから質問が出たから良かったかな。 今回はソーシャルネットワー…
ICML14から。数式とか書くのはめんどくさいからアイデアを中心に書く。 概要 ネットワーク上の ノード分類 の話で、各ノードは 複数のラベルタイプを持っている という設定。例えば論文中で使われている例だと、Facebookユーザの出身地、現住所、高校、大学…
グラフベース半教師あり学習 (SSL) のLabel propagation (LP) とLabel spreading (LS) の違いを説明している文献があまりなかったのでそれについてちょっと書いてみる。SSL自体とかLP、LSについては以下の記事にまとめた文献がいい感じなのでそちらを参照。 …
Machine Learning Advent Calendar 2014の12日目。 最近半教師あり学習に興味があってちょっと勉強してみたのでそれについて書いてみる。自分が勉強した時に読んだ文献も下の方に書いたのでもし興味があれば。 半教師あり学習はラベル付きデータに加えてラベ…