On the Accuracy of Hyper-local Geotagging of Social Media Content (WSDM'15) を読んだ
WSDM2015から。ちょうど開催中なので。
概要
簡単なアルゴリズムは提案しているが、主に分析しました論文。ツイートのジオタグを推定する。主にやったことは
あとはResearch questionに直接結びつかないようなことを細々やってみた感じ。
提案手法
ジオタグ付きツイートから地理的な局所性を持つn-gram (n=1,2,3) を抽出し、ジオタグなしツイートに抽出したn-gramが含まれていればそれを手がかりにジオタグを推定する。Hyper-localというタイトルになってるけど、特にそれといった工夫はしてない。超シンプルなので詳しくは論文を。
実験
ジオタグ付きツイートを使う。投稿したソース (Foursquare, Instagram, iPhone, Android) によって四つのデータセットに分ける。対象地域はニューヨークだけ。提案手法を使ってこれらのツイートのジオタグを推定した。
結果
- 提案手法のパラメータをいじるとAccuracyとCoverageのトレードオフが観測された。
- 投稿したソースによって精度が大きく異なった。Foursquare, Instagramから投稿されたツイートは精度よく推定できたが、iPhone, Androidから投稿されたツイートの推定精度は低かった。
- ツイートが多く投稿される場所から投稿されたツイートのジオタグはうまく推定できるが、あまり投稿されない場所から投稿されたものについてはあまりうまく推定できなかった。
感想
個人的な感想としては、残念な感じだった。批判したい点がけっこうある。
- 既存研究ガン無視。Related workで触れてはいるけどその後は全く触れない。比較なし。まぁ貢献として精度向上をうたってるわけじゃないからいいのかもしれないけど気になる。
- Research questionが狭い。多分提起してかつ分析もしっかりやったのは「ツイート投稿のソースの違いによって推定結果は異なるか」という点だけ。
- Research questionに直接つながらない細々とした分析が多い。
読み込めてない点も多々あるとは思うけど主に得られた知見は「FoursquareとかInstagramを通じて投稿されたツイートのジオタグは推定しやすいよ」っていうことくらいだった。設定したResearch questionと結果が一致してないと非常に読みづらいし質も低く見えるという良い反面教師だった。